
point on the curves. This means that, for example, for q = 109 W/m 2 the flow will be stable 
relative to infinitesimal planar perturbations with an inclination of less than 14 ~ . But, 
for q > 2.01.109 W/m 2 (for q = 2.01.109 W/m 2 the neutral curve degenerates into a point), the 
flow will be stable up to a vertical orientation of the film. 
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CALCULATION OF FLOWS OF MELT IN AN AMPULE 

V. V. Kuznetsov UDC 532.526.2 

The problem of determining the dopant distribution in crystallization under conditions 
of reduced gravitational force is of current interest. The physical characteristics of such 
processes are examined in [1-3]. To solve this problem, one must know the flow velocity 
field of the melt. Schemes for solving this problem, primarily for moderate Reynolds and 
Marangoni numbers, are proposed in a number of papers [4, 5]. 

In this paper we propose an asymptotic scheme of stationary thermocapillary convection 
in a cylindrical ampule with large Reynolds and Marangoni numbers; this situation is realized 
in the presence of very high temperature differentials along the lateral wall of the ampule 
and low viscosity of the melt. The flow consists of a collection of Prandtl and Marangoni 
boundary layers, which join to the core of the flow. The axisymmetrical circulating flow in 
the core is calculated using the Prandtl--Batchelor scheme. The thermocapillary convection of 
the melt in the ampule is calculated using this scheme. 

i. We are ~xamining the problem of determining the thermocapillary convection velocity 
field of the melt in a cylindrical ampule with directed crystallization in the absence of 
gravity. The region of flow is illustrated in Fig. i. The volume compression of semicon- 
ducting materials with melting gives rise to voids in the ampule, which are assumed to be dis- 
tributed along the lateral wall of the ampule. The flow is assumed to be laminar, station- 
ary, and axisymmetrical. The assumption of stationariness is explained by the fact that the 
time of crystallization of the entire ampule usually is several hours, so that the velocity 
of the crystallization front is of the order of I0 -~ cm/sec, which is much lower than the 
velocity of thermocapillary convection with a very large temperature drop along the ampule. 

Under the assumptions made above, the flow isdescribed by the system of Navier--Stokes 
equations 

p. ( , ) 
uu~ + wu~ = ~ -~ -  + v u ~  + "-7- u~ - -  - 7  u + u= , 

( Pz ' 
uw~ + w w ~  = - -  - -~  + ~ w ~  + -7-  w~ + w~z}, 

u~+ l-i-u+w~=O, r 

(1.1) 
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where u and w are the transverse and longitudinal components of the velocity vector. The 
conditions for attachment are imposed at the crystallization front z = L and at the bottom 
of the ampule z = 0 

and the condition 

u = w = 0, (1.2) 

P = Po ~ 2 ~ K  + 2 p v n - D . n ,  2 p v s . D . n  = 0~/0s, wIIz = u ( 1 . 3 )  

is imposed at the free lateral surface r = H(z). Here s and n are the tangent vector and 
the outer normal to the surface r = H(z); D is the tensor for the deformation velocities of 
the melt; p and v are the density and coefficient of kinematic viscosity; K is the average 
curvature of the surface r = H(z); the coefficient of surface tension o = oo -- ~ -- To), 
where OT = da/dT = const. The temperature along the lateral surface of the melt is assumed 
to be a fixed function of the coordinate z. 

2. To solve the problem (1.1)-(1.3), we single out the characteristic zone in the re- 
gion occupied by the melt. It is well known that, for sufficiently large temperature gradi- 
ents along the free surface, it is possible to single out the Marangoni boundary layer, whose 
mathematical model is given in [6]. In addition, we shall single out the boundary layers 
near the crystallization front and at the bottom of the ampule. All three boundary layers 
are joined to the main core of the flow of the melt. We assume that the free surface of the 
melt r = H(z) is weakly curved, i.e., (dH/dz) 2 << i. This assumption agrees with the fact 
that, in many semiconducting materials, for example germanium, the angles of touching and of 
growth are close to ~ and ~/2, respectively. Under the assumptions made, the second of the 
conditions (1.3) permits estimating the characteristic velocity V of the melt in the Marangoni 
boundary layer. This condition can be approximately written in the form p~wr = loTldT/dz, 
where the thickness of the Marangoni boundary layer wr = V/8, dT/dz = AT/L is the temperature 
drop along the lateral surface, Reynolds number Re = LV/v, we obtain for the characteristic 
velocity the value 

y = ( Io i lATIp~)~p(~D)  ~/~. (2. l )  
The intensity of the Marangoni flow can be estimated with the help of the Marangoni number 
M = I~TIATL/p~ 2, which represents the ratio of thermocapillary and viscous forces. Setting 
the temperature drop equal to i00 ~ and choosing the value of the material constants corre- 
sponding to fused germanium, we obtained a value of M of the order of 106 . Equation (2.1) 
gives a characteristic value of the velocity V of the order of 5 cm/sec. 

Let us assume that the principal core of the flow of the melt, to which the flows of all 
three boundary layers join, represents a limiting flow in the limit Re-+oowith closed 
streamlines. We introduce the dimensionless quantities using the formulas z = LZ, r = aR, 
u = UV, w = WV, where a is the radius of the ampule. As shown in [7], the only nonvanishing 
component of the vortex ~ in this case satisfies the relation ~ = CIR, where C: is some con- 
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stant. Introducing the stream function ~, so that U = (I/R)3~/~Z, W = --(I/IR)~/3R, we ar- 
rive at the problem of finding the stream function: 

k ~ _ ~ _ + ~  OR ~0~ Ri 0~0~ CR ~, ~ : a / L ,  , C : C i a ~ / V  (2 .2 )  

w i t h  the  b o u n d a r y  c o n d i t i o n  

~lr = O ,whe reP i s t hebounda~of the squam~-~R~l ,  O < - ~ Z ~ i .  

The solution of problem (2.2), (2.3) is given by the formula 

(2.3) 

r = C i + exp (-- ~k/~) - -  I (2 .4 )  
~=~ A(~)  ~ 

where  J~ and J2 a r e  B e s s e l  f u n c t i o n s  of  t he  f i r s t  k i n d  o f  o r d e r  1 and 2, r e s p e c t i v e l y ~  the  
numbers %k (k = 1,  2, . . . )  a r e  the  r o o t s  of  the  f u n c t i o n  J~ .  The c o n s t a n t  C, on which  the  
s o l u t i o n  of  the  p rob lem ( 2 . 2 ) ,  (2 .3 )  d e p e n d s ,  w i l l  be d e t e r m i n e d  n u m e r i c a l l y  be low.  

3.  I n  d i m e n s i o n l e s s  v a r i a b l e s ,  the  p rob lem f o r  M a r a n g o n i ' s  b o u n d a r y  l a y e r  n e a r  the  f r e e  
l a t e r a l  s u r f a c e  i s  w r i t t e n  i n  the  form 

with the boundary conditions 

OW 1 OW 1 OP 1 

ul - -~q  ~ wi Oz i Oz i -4:- - -  

Oui/Or i 3c Owi/Oz i ---- O, Opl/Or 1 

=0, 0 < % < I ,  O<ri< oo 

wiOh/Oz 1 

02tgl 
Or~ ' (3 .1 )  

OWl~Or i = dO/dzl, 

Pi  = Po q- P i  h, Po = (~/P V2a, P i  : a6/P V2a~, 

= u i at r i = h ( z i ) ,  w 1 - + W ( i ,  zi) a, r i - + o o .  

(3.2) 

The problem (3.1), (3.2) can be formally obtained by introducing the dimensionless vari- 
ables rl, zl, ul, wl, Pl, h, and 0. defined as r = a -- ~rl, H = a -- 6h, u =--eVul, w = Vwl, 
z = Lzl, p = pa + pV2p,, T = To + AT0;_by substituting into problem (1.1)-(1.3) and retain- 
ing first-order terms. Here, ~ = i/dRe. The pressure gradient is found from,Bernoulli's 
integral, if it is applied to the core of the flows [7]. Thus, ~p~/3z, =--W(I, z~) W(I, z~)/ 

A characteristic feature of the problem (3.1), (3.2) is that in contrast to the problem 
(1.1)-(1.3) the position of the free boundary can be found independently of the velocity com- 
ponents u~, w~, since the second condition (3.2) can be used to find the function h(zx). 
Physically, this means that in the boundary layer approximation capillary forces play the 
main role in determining the form of the free surface. Let us write the problem (3.1), (3.2) 
in Mies's variables zl and ~I: 

a~ __ ~r~ 02~ OPi " (3.3) 

0(o/0~i ---- 2dO/dz i ~ A(zi) at ~ 1 :  0; (3 .4 )  

where 

co ~ W~(I ,  %) as r  --+ oo ,  (3.5) 

@ = W~: tt I ----- OXpi/OZi; W i = --Ol~i/Orl. 

We single out the boundary layers at the crystallization front and at the bottom of the 
ampule. Introducing the dimensionless quantities ro, zo, pl, uo, wo, defined as r = a(l- 
ro), z = L -- ~azo, u = --Vuo, w = --eVwo, and retaining in the system of equations (i.i), after 
substituting first-order terms, we obtain 

Ou 0 u 0 a w  0 

Or o l - - r - -  o ~- Oz 0 ~ 0, 

U o 0z ' Oz--o= 
On___ o 0% OPi O~u~ aPi 0 
% 
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with the boundary conditions 

Uo = W o  = 0  at zo = 0 ,  ~ o - + U ( l - - r o ,  1) as Z o - ~ .  

From Bernoulli's integral 3p~/~ro =--U(I -- ro, I)3U(I -- ro, l)/~ro. The problem obtained 
has a singularity as ro +ii. Using (2.4), it is evident that ~p~/3ro = O(l-- ro). If we 
assume that ~p~/~ro = a=(l -- ro), then the self-similar solution can have the form 

u o = - - a ( l  - -  ro)d~(~)/d~, Wo = - - ] / 2 a ~ ( ~ ) ,  ~ = zo/]/2a.  

To find the function ~ we obtain the problem 

daT/d~ ~ q- Td2~/d~ 2 + (1/2)(t - -  (dT/d~) ~) = 0, ( 3 . 6 )  

= d ~ / d ~  = 0  ~ ~ = O, d ~ / d ~ - + l  ~ ~ - +  oo. 

As d e m o n s t r a t e d  i n  [ 8 ] ,  p r o b l e m  ( 3 . 6 )  h a s  a u n i q u e  s o l u t i o n .  I t  may t h u s  be  e x p e c t e d  t h a t  
as ro § i, uo = O(l -- ro), wo = O(1). Introducing Mies's variables q, ro, and ~o, defined 
as ~o/3zo = (i -- ro)uo, ~$o/3ro = --(i -- ro)wo, we obtain the problem 

@ = (I -- r0)~ V$ #=--!q -- 2 ~ (3.7) 
Or o 0 ~  Or o 

with the boundary conditions 

q = 0  at ~ o = 0 ,  q - + U 2 ( l - - r o ,  1) ~ % - + ~ .  ( 3 . 8 )  

Performing an analogous expansion, we obtain the problem for finding the velocity in 
the boundary layer at the bottom of the ampule. Setting r = ar2, z = eaz2, u = Vu2, w = eVw2, 
p = pV2p2 and, in addition, r2u2 = 3~2/3z2, r=w2 = --3~=/~r~, v = u==, we obtain the problem 

Or~Or 2 = r~ V-~O2v/O~ - -  20pz/Or 2 (3.9) 

with the boundary conditions 

v =  0 at ~ = O, v--+ U2(r2, 0) ~ ~ - + ~ .  ( 3 . 1 0 )  

4. All of the problems obtained above are determined if the constant C from (2.4) is 
known. To determine C we note that for a stationary liquid volume ~ with boundary E, the 
following energy identity holds: 

f t .  vdY = 2pv [ D : Dd~,  ( 4 . 1 )  
E 

where t is the stress vector; v is the velocity vector of the liquid at the boundary Z; D is 
t h e  t e n s o r  o f  d e f o r m a t i o n  v e l o c i t i e s .  U s i n g  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 2 )  and ( 1 . 3 ) ,  we 
w r i t e  t h e  f i r s t  t e r m  o f  t h e  i d e n t i t y  ( 4 . 1 ) ,  d e n o t e d  by  I ,  i n  t h e  f o r m  

1 

I = --f- apvl/~ I / r ;  [%=o A (zi) dzl. 
0 

We shall calculate the dissipation of energy over all separated zones of the liquid volume. 
In the core of the flow the dissipative functions X3 = D'D will equal 

[ a R j + + + -yZ-  + 7-2- ) ] / a . = V + --ff + o--fib-2- 

After integrating Xz over the region of the core we find that the energy dissipation in the 
core of the flow 

[ ii() ) C 2  ' 
2 ~ 2 dZdR . Ia = 4~pvV2 -52- + R 

0 0 

+ 
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By means of simple transformations we find that the dissipation of energy in the boundary 
layers at the crystallization front, at the bottom of the ampule, and opposite the free sur- 
face equal, respectively, 

l o o  

0 0  

loo 

12 = - ~  ~pvV ~ -V?, ~ ' 
0 0 

l o o  

11 = "~et ~pvV~ j" 3" (or (X,.v_~lp)/o,)2 d,dx. 
0 0 

We transform the integral from the last equality, using (3.3) and (3.4), 

Ioo 1 oo 

,I J" (~ ]/" [~ = 2 j" ~ (0( ]/-;or -- V--~o~,c) d,dx = 
O 0  O 0  

1 l o o  1 

= 2 S V - ; c o , { , = o d x _  2 S 3"O(r = 2 S ] / 7 o i , = o A  (x)dx--2 3 (~ 
0 0 0 0 0 

Substituting the relations obtained into (4.1), we obtain the equation for finding the con- 
stant C: 

11 i iil x(,l} F(c, 2c SS( , x (q,,2  ,dx=o (42, 
3x + - z )  d m z -  - w (t ,  x))I  + v 

0 0  0 0 0  

The numerical calculation was performed using the following scheme: The constant C was 
initially set equal to C = 5, the flow in the core was found from formula (2.4), and then the 
problem (3.3)-(3.5), (3.7), (3.8), (3.9), and (3.10) was solved numerically, after which the 
left side of Eq. (4.2) was calculated and the value of the constant C was corrected by the 
method of halving the segment. After eight iterations, to within l0 -s, the process converged 
to the value C = 0.136. The material constants 0, o, OT, and 9 were chosen to correspond to 
melted germanium with T = 937~ the temperature along the side wall was assumed to be dis- 
tributed parabolically with the apex of the parabola lying at the bottom of the ampule and 
the temperature drop AT = i00 ~ The dimensions of the ampule were chosen to be L = 5 cm and 
a = 0.4 cm. The small value of the constant C shows that the intense motion of the melt oc- 
curs only in a very thin layer (of the order of 10 -2 of the radius) next to the free surface. 
Figure 2 shows the decrease of the square of the longitudinal velocity in the Marangoni bound- 
ary layer with distance from the free surface in a section of the ampule by a plane equi- 
distant from the bottom of the ampule and the crystallization front. Figure 3 shows the 
stream lines in the core of the flow. It is evident that the bunchup at boundaries provides 
a posteriori justification for the use of the boundary-layer approximation. 

The author thanks V. V. Pukhnachev for formulating the problem and for valuable sugges- 
tions and discussions. 
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EXPLOSION OF A SPHERICAL CHARGE IN A MAGNETIC FIELD 

V. P. Korobeinikov and B. V. Putyatik UDC 534. 222.2 

The need to study the interaction of detonation waves with a magnetic field arises in 
research involving many phenomena, for example nonstationary flows of cosmic matter, as well 
as in practicall applications, for example in creating explosive MHD generators. Several 
problems involving explosions, taking into account the effect of a magnetic field for the 
case of a point explosion, are formulated and solved in [i]. 

The problem of an explosion of a cylindrical charge of condensed explosive in a gas in 
the presence of an external magnetic field is examined in [2]. In this paper we study the 
analogous problem for a spherical charge. The main difference, from the mathematical point 
of view, between this problem and the preceding one lies in the fact that its solution de- 
pends on two spatial coordinates (r, z in a cylindrical coordinate system) and time t, i.e., 
the problem becomes two-dimensional. The scheme for the flow that arises is shown in Fig. I, 
where 1 denotes the products of the detonation, 2 denotes the contact surface, 3 denotes the 
shock-compressed gas, and 4 denotes the shock wave. 

The interaction with the magnetic field occurs as a result of the motion of the elec- 
trically conducting gas, heated up by the shock wave, across the force lines of the magnetic 
field. The flow will differ from the spherically symmetrical flow that occurs in the absence 
of the field. In particular, the form of the contact surface bounding the detonation prod- 
ucts and the form of the shock waves arising in the surrounding gas will become gradually 
distorted, stretching out along the force lines of the magnetic field. 

The problem was solved in the approximation of small magnetic Reynolds numbers R m (in 
the calculations Rm ( 0.i); in addition, the deformations of the initial magnetic field were 
ignored. In taking into account radiation losses, we also used the approximation of volume 
emission. The detonation products are assumed to be electrically nonconducting [3] and non- 
emitting. The detonation wave is initiated at the center of the charge. Right up to the 
moment that the wave emerges onto the surface of the charge, the solution is self-similar and 
can be found separately. Then, it is already necessary to solve the complete system of two- 
dimensional equations of magnetogasdynamics, which have the form 
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